Non-stationary Compositions of Anosov Diffeomorphisms

نویسنده

  • MIKKO STENLUND
چکیده

Motivated by non-equilibrium phenomena in nature, we study dynamical systems whose time-evolution is determined by non-stationary compositions of chaotic maps. The constituent maps are topologically transitive Anosov diffeomorphisms on a 2-dimensional compact Riemannian manifold, which are allowed to change with time — slowly, but in a rather arbitrary fashion. In particular, such systems admit no invariant measure. By constructing a coupling, we prove that any two sufficiently regular distributions of the initial state converge exponentially with time. Thus, a system of the kind loses memory of its statistical history rapidly. Acknowledgements. The author has received financial support from the Academy of Finland and the Väisälä Fund. He wishes to thank Lai-Sang Young for many discussions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical Coherence of Partially Hyperbolic Diffeomorphisms of Tori Isotopic to Anosov

We show that partially hyperbolic diffeomorphisms of d-dimensional tori isotopic to an Anosov diffeomorphism, where the isotopy is contained in the set of partially hyperbolic diffeomorphisms, are dynamically coherent. As a consequence, we obtain intrinsic ergodicity and measure equivalence for partially hyperbolic diffeomorphisms with one-dimensional center direction that are isotopic to Anoso...

متن کامل

On Anosov Diffeomorphisms with Asymptotically Conformal Periodic Data

We consider transitive Anosov diffeomorphisms for which every periodic orbit has only one positive and one negative Lyapunov exponent. We establish various properties of such systems including strong pinching, C smoothness of the Anosov splitting, and C smoothness of measurable invariant conformal structures and distributions. We apply these results to volume preserving diffeomorphisms with dim...

متن کامل

Aspherical Products Which do not Support Anosov Diffeomorphisms

We show that the product of infranilmanifolds with certain aspherical closed manifolds do not support Anosov diffeomorphisms. As a special case, we obtain that products of a nilmanifold and negatively curved manifolds of dimension at least 3 do not support Anosov diffeomorphisms. Mathematics Subject Classification. Primary 37D20; Secondary 55R10, 57R19, 37C25.

متن کامل

K-invariants of conjugacy classes of pseudo-Anosov diffeomorphisms and hyperbolic 3-manifolds

New invariants of 3-dimensional manifolds appearing in the Ktheory of certain operator algebras are introduced. First, we consider the conjugacy problem for pseudo-Anosov diffeomorphisms of a compact surface X. The operator algebra in question is an AF -algebra attached to stable (unstable) foliation of the pseudo-Anosov diffeomorphism. We prove that conjugacy classes of commensurable pseudoAno...

متن کامل

Global Rigidity of Higher Rank Anosov Actions on Tori and Nilmanifolds

An Anosov diffeomorphism f on a torus T is affine if f lifts to an affine map on R. By a classical result of Franks and Manning, any Anosov diffeomorphism g on T is topologically conjugate to an affine Anosov diffeomorphism. More precisely, there is a homeomorphism φ : T → T such that f = φ◦g◦φ−1 is an affine Anosov diffeomorphism. We call φ the Franks-Manning conjugacy. The linear part of f is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011